Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement
نویسندگان
چکیده
The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation.
منابع مشابه
Stomatal Density as a Selection Criterion for Developing Tea Varieties with High Physiological Efficiency
Stomata, the small opening in leaf connecting plant with atmosphere, play pivotal roles in global water and carbon cycles. Stomata regulate the two key important physiological functions viz. photosynthesis and transpiration and thus are crucial for performance of crop species in changing climatic conditions. Although environmental factors influence the density and size of stomata, the genetic c...
متن کاملLeaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species?
Given the need for parallel increases in food and energy production from crops in the context of global change, crop simulation models and data sets to feed these models with photosynthesis and respiration parameters are increasingly important. This study provides information on photosynthesis and respiration for three energy crops (sunflower, kenaf, and cynara), reviews relevant information fo...
متن کاملGenetics‐based dynamic systems model of canopy photosynthesis: the key to improve light and resource use efficiencies for crops
Improving canopy photosynthetic light use efficiency instead of leaf photosynthesis holds great potential to catalyze the next "green revolution". However, leaves in a canopy experience different biochemical limitations due to the heterogeneities of microclimates and also physiological parameters. Mechanistic dynamic systems models of canopy photosynthesis are now available which can be used to...
متن کاملPhotosynthetic parameter estimations by considering interactive effects of light, temperature and CO2 concentration
Biochemical leaf photosynthesis models are evaluated by laboratory results andhave been widely used at field scale for quantification of plant production,biochemical cycles and land surface processes. It is a key issue to search forappropriate model structure and parameterization, which determine modeluncertainty. A leaf photosynthesis model that couples the Farquhar-vonCaemmerer-Berry (FvCB) f...
متن کاملModelling Dry Matter Production and Partitioning in Sweet Pepper
Models predicting growth and yield have been developed for a large number of crops. This paper describes a dynamic, mechanistic model for sweet pepper, addressing issues such as leaf area expansion, dry matter partitioning and validation. Leaf area formation and organ initiation are simulated as a function of temperature sum. Light absorption and photosynthesis are calculated for a multilayered...
متن کامل